TELECOM ITALIA Technology – Information Technology – Technical Security

June 1, 2010

The Best Known State Recovery Attacks on RC4

| JOVAN GOLIĆ | Security Innovation | | GUGLIELMO MORGARI | Telsy Elettronica e Telecomunicazioni |

Rump Session of Eurocrypt 2010, Monaco, May 30 – June 3, 2010

TELECOM ITALIA The best known state recovery attacks on RC4

Outline

- 1. Description of RC4 Keystream Generator
- 2. Objective and Previous Results
- 3. Iterative Probabilistic Algorithms
- 4. G&D Attack for Consecutive State Patterns
- 5. G&D Attack for Maximum State Patterns
- 6. D&C Attack for Maximum State Patterns

1. Description of RC4 Keystream Generator

- **RC4-***N* works over \mathbb{Z}_N (additions modulo *N*)
- Internal state: permutation *S* and pointers *i*, *j*
- Initial state: S_0 and i, j = 0
- Next-state function:

$$i \leftarrow i + 1$$

 $j \leftarrow j + S[i]$
Swap $S[i], S[j]$

• Output function:

$$z \leftarrow S[S[i] + S[j]]$$

2. Objective and Previous Results

- **Objective:** *Recover* S₀ *or any* S *from a keystream segment*
 - Data complexity: segment length D
 - Time complexity: *T* computational steps
- Best previous results, for *N*=256:
 - Knudsen et al. Asiacrypt '98: *D*=2⁸, *T*=2⁷⁷⁹
 - State recovery by systematic state search with backtracking, in consistency with keystream
 - Maximov & Khovratovich Crypto '08: *D=2²⁴⁸, T=2²⁴² (hypothetical)
 - Same as above, but using special state patterns that uniquely determine consecutive values of *j* pointer
 - Such a state pattern needs to be found along keystream in a D&C manner, without running state recovery

3. Iterative Probabilistic Algorithms-1

• Knudsen et al. Asiacrypt '98:

- Recursive forward computation of approximate a posteriori probabilities for state components, given keystream
- A priori distribution of S₀ consists of d known consecutive entries and the remaining uniform probabilities (estimate for D=N=256: d=155 suffices for full state recovery; too large for G&D attack)

• Golić ACISP '00:

- Improved forward computation of approximate a posteriori probabilities for state components, given keystream (joint effects 'change of state' and 'observation of output symbol')
- Backward computation of these probabilities, given keystream
- Iterative algorithm composed of rounds consisting of one Forward and one Backward pass

3. Iterative Probabilistic Algorithms-2

- Algorithm IPA, improvement of Golić ACISP '00:
 - A priori distribution of S_0 or any S adapted to deal with:
 - Consecutive state patterns: i, j; S[k+i], 1 ≤ k ≤ d; it follows that (at least) d subsequent values of j pointer are uniquely determined d patterns
 - Maximum state patterns: i, j; S[p_k]=v_k, 1 ≤ k ≤ d, such that w subsequent values of j pointer are uniquely determined and w is (close to) maximal – (d,w) patterns
 - Other improvements include: hard preprocessing, hard reset of Backward, soft preprocessing, modifying initial probability matrix of Forward, soft zero row reset, and soft inconsistent column reset
- Round complexities: $T=2N^6$, D=N, memory $M=2(N^2+N)$

4. G&D Attack for Consecutive State Patterns

- In a G&D attack, value of *(shifted) d pattern* is guessed and, for each guess, IPA is run on *D*=*N* keystream
- If guess is correct, then states are fully recovered with a success probability *p*, depending on *d* and *N*
- On the basis of systematic experiments for 16 ≤ N ≤ 80 and various *d* and about 10 experiments for N=128 (about one month per 5+1 rounds of IPA), we make

Conjecture 1: If $d/N \cong 1/3$, then $p \cong 0.5$, for $N \ge 48$.

- Attack complexities, for *N*=256:
 - Basic version ($p \cong 0.5$): $D=2^9$, $T=2^{724}$
 - Optimized version (optimized p): $D=2^{57}$, $T=2^{676}$

5. G&D Attack for Maximum State Patterns

- In a G&D attack, position of *shifted (d,w) pattern* is guessed and, for each guess, IPA is run on *D*=*N* subsequent keystream
- If guess is correct, then states are fully recovered with a success probability *p*, depending on *w*, *d*, and *N*
- On the basis of systematic experiments for 4 ≤ d ≤ 9 and various *N* and about 10 experiments for *N*=128, we make

Conjecture 2: If ${}^*d \cong N/10+1$, then $p \cong 0.5$, for $N \ge 256$. (*using conjecture $w/(d-1) \cong 6$ of Maximov & Khovratovich)

- Attack complexities, for *N*=256:
 - Basic version ($p \cong 0.5$): $D = 2^{223}$, $T = 2^{275}$
 - Optimized version (optimized p): $D=2^{208}$, $T=2^{260}$

6. D&C Attack for Maximum State Patterns

- In a G&D attack, IPA, with time complexity $T \approx N^6$, is run for each guessed position of shifted maximum state pattern
- In a D&C attack, correct position of *unshifted pattern* is found in a D&C manner, without running IPA for state recovery, by the method from Maximov & Khovratovich Crypto '08
- Required additional properties of state pattern are not shift invariant and hence the value of *i* pointer has to be matched, so that *D* increases *N* times; *w*/(*d*-1) is somewhat reduced and hence *D* further increases, but *T*≅*D*/*N*
- Attack complexities, for *N*=256:
 - Basic version ($p \cong 0.5$): $D \approx 2^{231}$, $T \approx 2^{223}$ (hypothetical)
 - Optimized version (optimized p): $D \approx 2^{216}$, $T \approx 2^{208}$ (hypothetical)

